

Name (Last, First): _____ ID Number: _____

Sample Question Solutions for the Breaking Bonds Round Test

Physical Properties – Easy

1. What are the dominant intermolecular forces for each of the following molecules?

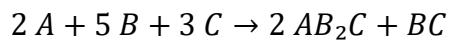
Choose between London Dispersion Forces, Covalent Interactions, Gravitational Forces, Dipole – Induced Dipole Forces, Dipole – Dipole Forces, and Hydrogen Bonds

a. Liquid Nitrogen:

London Dispersion Forces

b. Water:

Hydrogen Bonds


c. Carbon Dioxide:

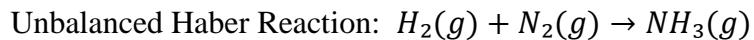
London Dispersion Forces

Name (Last, First): _____ ID Number: _____

Kinetics – Easy

2. Write the rate law for the following reaction given the following details. Assume the rate constant is 1.

You know the reaction is:


- first order with respect to A
- second order with respect to B
- zeroth order with respect to C

rate = $k[A][B]^2$

Name (Last, First): _____ ID Number: _____

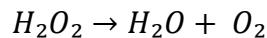
Stoichiometry – Medium

3. The Haber Reaction is a reaction used to synthesize ammonia (NH_3), which is a common component of fertilizers. Consider the **unbalanced** Haber Reaction below. You are given 8.74 g of $\text{N}_2(\text{g})$ and 31.47 L of $\text{H}_2(\text{g})$ at STP (0 °C, 1 atm). Assuming the reaction goes to completion, how many moles of the excess reagent will be left over? Assume ideal gas behavior.

$$\frac{8.74 \text{ g N}_2}{1} * \frac{1 \text{ mole N}_2}{28.013 \text{ g N}_2} = 0.312 \text{ moles of N}_2 \rightarrow \text{Limiting Reactant}$$

$$\frac{31.47 \text{ L H}_2}{1} * \frac{1 \text{ mole H}_2}{22.4 \text{ L H}_2} = 1.4 \text{ moles of H}_2 \rightarrow \text{Excess Reactant}$$

0.312 moles of N_2 used


$(0.312 \text{ moles}) * (3) = 0.936 \text{ moles H}_2 \text{ used}$

$1.4 - 0.936 = 0.464 \text{ moles H}_2 \text{ remaining}$

Name (Last, First): _____ ID Number: _____

Redox - Medium

4. Hydrogen peroxide decomposes spontaneously under standard conditions. Below is the unbalanced equation for the decomposition of hydrogen peroxide.

a. List the oxidation states of each element.

H in H_2O_2 is: +1

O in H_2O_2 is: -1

H in H_2O is: +1

O in H_2O is: -2

O in O_2 is: 0

Write the balanced oxidation and reduction **half reactions** in an **acidic medium**.

Reduction: $H_2O_2 + 2 H^+ + 2 e^- \rightarrow 2 H_2O$ or $H_2O_2 + 2 H_3O^+ + 2 e^- \rightarrow 4 H_2O$

Oxidation: $H_2O_2 \rightarrow + O_2 + 2 e^- + 2 H^+$ or $H_2O_2 + 2 H_2O \rightarrow + O_2 + 2 e^- + 2 H_3O^+$

Name (Last, First): _____ ID Number: _____

Acid-Base Equilibrium – Hard

5. The ocean floor in Krypton consists of hydrothermal vents and high water pressure. Under temperatures of 150 °C and pressures of about .47 MPa, the self-ionization of water has a K_w of 11.64. An unknown, diprotic acid, H_2A , may be released from these hydrothermal vents. **The concentration of the acid in the area is 0.01 M.** Calculate the pH of the surrounding region given the following information about the acid.

- $K_{a1} = 4.5 \times 10^{-7}$
- $K_{a2} = 4.7 \times 10^{-11}$

	<u>H_2X</u>	\rightarrow	<u>HX</u>	<u>H^+</u>
Initial	.01		0	$\sqrt{10^{-11.64}}$
Change	-x		+x	+x
Final	.01-x		+x	$1.5136 \times 10^{-6} + x$

$$(x)(1.5136 \times 10^{-6} + x) / (0.01 - x) = 4.5 \times 10^{-7}$$

$$x = 6.611 \times 10^{-5}$$

$$H^+ = 1.5136 \times 10^{-6} + 6.611 \times 10^{-5} = 6.7621 \times 10^{-5}$$

$$pH = -\log(H^+) = -\log(6.7621 \times 10^{-5}) = 4.17$$

$$pH = 4.17$$

Name (Last, First): _____ ID Number: _____

Thermodynamics - Hard

6. 31.4 g of ice is added to 100 g of water that is at 66.60 °C in a constant-pressure calorimeter. **At the instant when all the ice has melted**, the final temperature of the water is 23.40 °C. Given that the specific heat, C, of water is 4.18 J/g°C, what is the experimental value for the specific heat of fusion, ΔH_f , of ice? **Report your answer in kilo-joules per mole.**

(100g)(66.6°C -23.4°C)(4.18K/g°C) =18057.6Joules gone to melting the ice

(18507.6J) *(18g/mol) / (31.4g) = 10351.5 Joules/mol

10.35 kJ/mole